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Flow past wing-body junctions 
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The three-dimensional laminar flow past a junction formed by a thin wing protruding 
normally from a locally flat body surface is considered for wings of finite span but 
short or long chord. The Reynolds number is taken to be large. The leading-edge 
interaction for a long wing has the triple-deck form, with the pressure due to the wing 
thickness forcing a three-dimensional flow response on the body surface alone. The 
same interaction describes the flow past an entire short wing. Linearized solutions 
are presented and discussed for long and short two-dimensional wings and for certain 
three-dimensional wings of interest. The trailing-edge interaction for a long wing is 
different, however, in that  the three-dimensional motions on the wing and on the body 
are coupled together and in general the coupling is nonlinear. Linearized properties 
are retrieved only for reduced chord lengths. The overall flow structure for a long 
wing is also discussed, including the traditional three-dimensional corner layer, which 
is shown to have an unusual singular starting form near the leading edge. Qualitative 
comparisons with experiments are made. 

1. Introduction 
The three-dimensional motion of fluid past a wing-body junction is of much 

concern in aerodynamics, with regard to both the local and the global scale of the 
viscous effects produced and, in particular, to  any pronounced secondary flows set 
up. As has proved to be the case in planar wing calculations, understanding of these 
effects and their scales may form a significant element in numerical schemes, 
addressing the Navier-Stokes equations or approximations for flow past an entire 
aircraft for instance, and the question arises of whether there can be an important 
influence on the aircraft performance overall or not. As well as the need to  know the 
pressures and stresses exerted on a wing-body junction in flight, there is also the 
closely allied difficulty of determining the interference and interaction from the side 
wall when a planar wing model is placed in a wind tunnel. A number of interesting 
experimental studies of basically symmetric flow near wing-body-junction models 
have been made (Peake, Galway & Rainbird 1965; East & Hoxey 1968; Shabaka & 
Bradshaw 1981), usually for a very blunt, e.g. circular, wing protruding normally from 
a flat body surface. A common feature observed experimentally is the occurrence of 
three-dimensional separation upstream, with a curved separation line present on the 
body surface ahead of the wing. 

Such truly nonlinear and complicated flowfields, involving three-dimensional 
boundary-layer collisions and often turbulence, for example, would seem of course 
to be well beyond the realms of much analysis. Indeed they appear rather remote 
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from the basic, perhaps most obvious, model we consider below, namely the junction 
formed by a flat body surface and a thin symmetric two- or three-dimensional wing 
of finite chord. Nevertheless i t  is found that certain of the theoretical properties that 
emerge are not far removed from the experimental observations for blunt wings, in 
qualitative terms a t  least, including the nature of the motion upstream and the 
suggested separation line there. Furthermore the model geometry discussed would 
seem to be more closely linked with the junctions of real life than is that associated 
with the similarity solution for flow along a streamwise corner, which has received 
much attention (e.g. Zamir 1968; Rubin & Grossman 1971 ; Desai & Mangler 1974). 
Lastly, we believe that an understanding of the flow past the model geometry here 
may be of benefit to the understanding and control of the complex flows that occur 
in practice. The theory below is concerned initially with the flow features arising near 
the start of the junction, that  is, near the leading edge of a long wing or for an entire 
short wing. The incident boundary layer on the body surface is driven by the locally 
uniform external stream, is well-formed, attached and planar, and so in a sense its 
influence dominates the inviscid-viscous interaction between the flow on the wing 
and the flow on the body surface. For the attached Blasius boundary layer just 
forming on the wing is much thinner. The interaction provoked then has the triple-deck 
form, with the motion past the thin wing provoking, on the body surface, an unknown 
pressure force which interacts with the unknown displacement there. This causes the 
boundary layer on the body surface to become three-dimensional and to exhibit 
upstream influence. Nonlinearity results if the typical slope of the wing in the 
interaction stage is of order Red,  where Re is the large Reynolds number: see $2. 
For thinner wings, including the fundamental case of the flat plate where the Blasius 
displacement on the wing is responsible for the interaction, linearized analysis is 
possible and is described in $3. Linearized results are given in $93 and 4 for two- and 
three-dimensional wings respectively, examples of the latter being swept wings and 
tapered wings. 

Further comments are presented in $5, along with a study of the trailing edge of 
the junction. The model problems studied here have possible relevance also to certain 
other strongly three-dimensional motions, including the flow past fins, tail-body 
junctions, missiles, fishes, bridges, past high-rise buildings and in branching flow in 
pipes. An interesting feature is that  even the thin wing can provoke a secondary-flow 
component of velocity which is comparable to the streamwise component near the 
body surface. Although for a very thin wing this nonlinear feature can be suppressed 
somewhat in the initial leading-edge interaction, i t  persists in the subsequent 
trailing-edge interaction for any long wing. The trailing-edge adjustment is therefore 
always nonlinear, unless the wing is relatively short, as noted in $5. We believe that 
experimental and/or computational studies of (e.g.) the fundamental, flat-plate, 
wing-body-junction model here could be most illuminating. This is especially so in 
view of the inference, to be drawn from the investigation below, that the complicated 
effects observed in practice (see references above, also McDonald & Briley 1982; 
Kitchens et al. 1983; Mehta, Shabaka & Bradshaw 1982; Mehta et al. 1983) near 
wing-body junctions may well be caused to a large extent by the presence of 
three-dimensional inviscid-viscous interaction, even for turbulent flows. 

I n  what follows the motion is taken to  be laminar and steady and the fluid is 
assumed to be incompressible. 
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2. A thin planar wing 
We start by discussing the fluid motion past a wing-body junction formed by a 

thin planar symmetric wing projecting normally from the aircraft body. The latter 
is taken to have a flat surface, since our initial concern is with the localized flow 
features; more-global features are considered later in $5.  Moreover, the wing is placed 
a t  zero incidence to the oncoming mainstream, while the resultant motion is assumed 
to be symmetric about the wing’s centreplane y = 0, for convenience, and so we need 
study only the upper half of the motion, y > 0. Here, in Cartesian coordinates x, y, 
z ,  the wing starts at x = 0 and is given (for all z > 0) by y = k x )  for x > 0, y = 0 for 
x < 0, where the typical wing thickness 171 is small in some sense, whereas the body 
occupies the flat surface x = 0 for all x, y. See the sketch in figure 1. The lengths (x, y ,  z )  
above and the corresponding velocity cmponents (u, u, w) are non-dimensionalized 
with respect to I, and u, respectively, where 1, is the characteristic lengthscale of 
the body, e.g. the streamwise distance from the aircraft nose to the leading edge of 
the wing, and u, is the speed ofthe mainstream, which flows in the positive x-direction. 
The pressure is written p, +PULP, with p ,  and p denoting the mainstream pressure 
and the fluid density respectively. The typical global Reynolds number is then 
Re = u,~,v-~, where v is the kinematic viscosity of the fluid, and Re is supposed to 
be large. 

On an inviscid basis, with the above wing-body geometry, the uniform stream given 
by u = 1, u = w = 0 continues broadly undisturbed apart from a small O(l j l )  
perturbation. Viscous effects alter the flow substantially, however, near the wing and 
body surfaces at least, where viscous-inviscid interaction must occur. There then 
appear to  be two aspects to consider. First, sufficiently near the start of the junction, 
for small x, and for a sufficiently thin wing, the predominant interaction involves just 
the effect, on the flow close to the body surface, of the motion past the wing. The 
‘opposite’ effect, that  of the flow near the body surface on the flow’near the wing, 
is much less. The reason for this is that  for small x the boundary layer on the wing 
is only just formed and so is thin compared with the more developed O(Re-4) thick 
oncoming boundary layer, on the body, which by contrast has its origins a t  an 0(1) 
distance ahead of the wing-body junction. Hence the wing’s boundary layer is much 
the more attached one then and is less affected by a given size of induced pressure 
field than is the thicker boundary layer on the body. The latter layer must be the 
first to feel the effects of any interaction, and is the one where three-dimensional 
separation, for instance, is to  be expected a t  first. 

That brings us to the second main aspect, which concerns the type and scale of 
interaction. Nonlinear responses such as separation in an external developed boundary 
layer, whether three-dimensional (Smith, Sykes & Brighton 1977) or not, are 
controlled largely by the triple-deck interaction, as is well known. Formally, 
therefore, the critical size of induced pressure p, i.e. the smallest size that provokes 
a nonlinear interactive response in the body’s boundary layer, is of order Re-$, and 
the streamwise lengthscale invoked is O(Red) .  This emphasizes initially the role 
played by a wing that produces an OfRe-:) typical pressure field within a distance 
O(Re-i) of its leading edge, since these are the triple-deck scales. There are perhaps 
two main categories of such wings to consider. One comprises wings of 0(1) chord 
length in x (‘long wings’); the other comprises wings of chord length O(Re-i) (‘short 
wings’). The flow properties for other chord lengths tend to be covered by limiting 
cases of the above two. Now the pressure p induced near the leading edge or nose 
of a long thin wing depends mostly on the local wing shape there. For p is given by 
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FIGURE 1.  The junction formed by a thin symmetric two-dimensional wing of length L normal to 
the body surface ( z  = 0) and aligned with the oncoming two-dimensional uniform stream and 
body-surface boundary layer (O(Re-$).  The triple-deck ‘box ’, describing the three-dimensional flow 
around the junction’s leading edge for a long wing ( L  = O(l ) ) ,  or about the entire junction for a 
short wing ( L  = O ( R d ) ) ,  is shown by dashed lines. See also figure 8. 

the Cauchy-Hilbert integral of the wing’s slope (see below) on an inviscid basis, and 
so near a leading edge p is predominantly proportional to the local wing slope, in 
addition to regular global contributions of order H ,  where H is the small maximum- 
thickness-to-chord ratio. Thus with a typical blunt nose of the parabolic form 
y = j ( x )  - Hxi(x+O+), for example, the induced pressure p a Hx-t predominantly 
as x+O+. So when x falls to O(Re-8) the critical interactive pressure O(Red) is 
reached if the maximum wing thickness H is O(Re&). In addition, the viscous 
boundary layer on such a wing has the Blasius form of thickness O(Re-ixi) (x > 0) 
and so is always thinner than the wing thickness H in that case (see also $3) and has 
negligible effect to leading order. Another point of concern is the traditional nonlinear 
inviscid zone of non-uniformity near the leading edge (see e.g. Van Dyke 1964), but 
this is of extent O ( H 2 )  = O(Re-g), small compared with the x - Re-2 interaction scale, 
and can be reasonably presumed to have negligible influence als?. Local shapes other 
than the parabola can be regarded similarly. Thus if the shape f(x) - Hxn as x --f 0 + 
with 0 < n < 1 for a blunt nose, then locally the pressure p a Hxn-l, which tends 
to O(H Rei(l-n)) in the triple-deck interaction scale, pointing to the critical thickness 
H = O( for nonlinear viscous-inviscid interaction. This is self-consistent 
provided that the O(Re-?) displacement thickness of the wing’s boundary layer 
remains negligible for all x of current interest, implying the restriction that n > 5. 
Conversely, therefore, if n < f the displacement thickness then has a leading-order 
or even dominant influence downstream on the induced pressure, although not 
necessarily within the interaction length (depending again on the local wing shape 
there). The same crossover between the influence of the wing thickness and that of 
its viscous boundary layer can occur if, for a given value of the shape index n, the 
wing thickness H is below the critical thickness determined previously; in that case 
only a linearized wing-body interaction is induced, since the pressure forcing due to 
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the flow past the wing is less than the critical triple-deck value needed for nonlinear 
interaction on the body surface. Examples are given in $3. 

The central point overall is that the induced pressure from any planar blunt long 
wing is dominated by the local wing shape, and unaffected by the shape further 
downstream, as regards the wing-body interaction properties near the leading edge. 
On the other hand, the critical thickness for a short thin wing as defined a t  the start 
of this paragraph is always O(Re-%), since then its typical slope, and hence its pressure 
effect from the Cauchy-Hilbert integral, is O(Re-:), as required for significant 
interaction with the body’s boundary layer. The above arguments have to assume 
suitable smoothness of the thin wing surface of course and essentially attached flow 
thereon. Attached flow, with a thin boundary layer, is achieved if the trailing edge 
is cusped, for instance, but i t  becomes open to  question for less sharp trailing edges, 
especially blunt ones, where local small separations, if not worse, can occur. 
Nevertheless, for the long thin wing the leading-edge flow properties are dominated 
so much by the nose shape that they are still unaltered to leading order by any 
breakaway separation from the wing downstream, while for the short wing, trailing- 
edge separation can remain a relatively confined phenomenon. So the attached flow 
restriction, applied for convenience to the flow around the wing, can be relaxed if 
necessary. 

Two-dimensional flow alone past the thin short or long wing above produces in 
consequence an O(Red) pressure field dependent only on x and y .  This holds good 
for distances z greater than O(Re-8) from the body surface z = 0,  but not when z is 
O(Red), since a t  such distances the three-dimensional triple-deck interaction takes 
place, with the O(Red) pressure provoking within the body boundary layer an O(Re-2) 
displacement comparable to the local wing thickness. The three-dimensional linearized 
potential flow in the upper deck just outside the boundary layer then, for distances 
z of order Red, is governed by Laplace’s equation (a2/aX2 + az/a Y2  + a 2 / @ ) p  = 0 for 
the unknown reduced pressure p with the boundary conditions a j i / a  Y ( X ,  O +  , 2 )  = 
-hd2f/dX2, ap/az(X, Y,O+) = -a26(X, Y ) / a X 2  and p ( X ,  Y , 0 + )  = P ( X ,  Y ) ,  for 
(respectively) tangential flow on the scaled local wing surface Y = h R e d f ( X )  and 
to match the body’s unknown scaled displacement thickness 6 ( X ,  Y )  and unknown 
scaled pressure P ( X ,  Y ) .  Here ( x ,  y, z )  = R e d ( X ,  Y ,  Z), p = Redp give the upper-deck 
scalings and ji, f ,  6, P and the reduced wing thickness parameter h are generally of 
order unity, while the domain of interest is - co < X < 00,  0 < Y < CO, 0 < Z < 00 

by symmetry. The solution for the pressure j i  here can be viewed as consisting of 
two parts: (a )  the two-dimensional wing solution given by the single Cauchy-Hilbert 
integral 

which has the advantage of producing no displacement on the body surface = 0 + ; 
and (6) the three-dimensional solution corresponding to the unknown displacement 
S ( X ,  Y )  on the body alone, with the symmetry of 6 with respect to Y adding no extra 
displacement on the wing Y + O  + . The combination of (a )  and ( b )  achieves the desired 
wing and body inviscid conditions, and hence we have the forced pressure-displace- 
ment relation 

This relation then controls the flow induced on the body surface, and the unknowns 
P and 6. That flow involves the main and lower decks, being governed primarily by 
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the lower-deck properties where z = Re-SZ and the three-dimensional boundary-layer 
equations a u  av  aw 

ax ay  az -+-+- = 0 ,  

au au au ar a2u 
U - + v - + w - = - - ( X ,  Y)+--, ax ay az ax az2 

av  a v  a v  ap 22V u-+ v-+ w- = - - (X ,  Y)+- ax a y  az a y  a 2 2  

(2.2b) 

(2 .2c)  

(2 .2d)  

apply, with the usual triple-deck scalings (Smith et ul. 1977). The boundary conditions 
here are 

U =  V =  W = 0  a t  Z = 0 ,  ( 2 . 2 e )  

respectively for no slip on the flat body surface, for matching with the displaced main 
part of the O(Re-4) boundary layer, and for joining with the planar boundary layer 
upstream. The constant h is the incident O(1) skin friction, taken to be unity 
henceforth for convenience. Also, by symmetry, V = 0 a t  Y = 0. 

The viscous-inviscid three-dimensional flow interaction for the wing-body junction 
is given by the solution of (2.2u-g) for a prescribed wing shape h f ( X ) .  It is noteworthy 
that the forcing (a h f ( X ) )  which produces the interaction and three-dimensionality 
in the body’s boundary layer comes from outside the boundary layer itself, which 
is a mechanism quite different from those in three-dimensional interactive flows (e.g. 
past humps) considered previously. The presence of the thin wing shape in the upper 
deck outside the boundary layer forces only a small pressure perturbation there, but 
this pressure when fed down through the body’s boundary layer is enough to provoke 
the nonlinear response in the slower, lower-deck, flow close to the body surface. I n  
that slower flow the wing shape plays hardly any further part, as it is relatively thin, 
except for the necessity of tangential flow a t  the wing surface, or in the present case 
the symmetry requirement I‘ = 0 a t  Y = 0. The resultant problem is nonlinear in 
general and so requires a numerical treatment. Subsequently we consider the 
linearized versions, valid strictly if the wing-thickness parameter h is small, or for 
the basic problem of a wing which is a finite flat plate: see 93. Meanwhile it is worth 
remarking that the three-dimensional triple-deck interaction emphasized above does 
not cover all the features of the three-dimensional flow. Other small subregions of 
interest are present, including the thin O(Re-g) (in y)  boundary layer developing on 
the locally O(Re-!) thick wing, and a small corner zone O ( R e d )  by O(Red)  (in y, z )  
where y- and z-diffusion are equally significant. All of these subregions are believed 
to be passive relative to the triple-deck interaction, however, which seems a bold 
assumption, perhaps, but which can be backed up physically. I n  particular, the wing’s 
boundary layer is driven forward in a quasi-Blasius fashion, apart from in the corner 
zone and in the traditional leading-edge nonlinear inviscid zone for smaller 5,  and 
so does not affect (2 .2u-g) .  Larger-scale regions of interest also arise, but only further 
downstream as discussed in $5, and these likewise have negligible effect on the 
fundamental problem (2.2u-g). Other more general sizes for the wing dimensions or 
for the incident planar boundary-layer thickness can also be accommodated, but these 
are merely limiting cases of the fundamental triple-deck problem, unless large-scale 
separation occurs, which is a case beyond our current scope. Accordingly we focus 



Flow past wing-body junctions 197 

attention on (2.2a-g) for a number of wing shapes f(X), both short and long, in $a3 
and 4, before considering larger-scale properties and trailing-edge effects in § 5 .  

3. Linearized solutions for thin or flat planar wings 
When the wing-thickness parameter h in ( 2 . 2 ~ )  is small, a linearized version of 

(2.2a-g) applies, and much of the analysis in Smith et al. (1977) on flow past humps 
can be taken over. To shorten matters we may work conveniently in terms of an 
‘effective hump shape’ then, since the double Fourier transform in X and Y (for 
notation see Smith et al.) of (2 .2a)  gives 

P**(k, 1 )  2k”(k) kZS**(k, 1 )  = -____- 
h k 2 + P  h(k2+Z2)b 

Heref*(k) is the transform of f ( X )  with respect to X ,  and S stands for - A  in Smith 
et al. So a comparison with $ 3  of that paper shows that our linearized problem for 
a wing shape hf(X)  and flat surface 2 = 0 corresponds to the linearized problem of 
flow over a hump given by 2 = hF(X,  Y ) ,  where the effective hump shape F satisfies 

F**(k, I )  = 2(k2+/2) - - t f*(k) .  ( 3 . 2 )  

The same analogue holds in the nonlinear regime, incidentally. The linearized 
solutions for the transforms we require then follow from Smith et al. I n  particular, 

P**(k, I )  - 2(ik)2f*(k) (k2+I2)- l  - 
h A 9 ( 3 . 3 a )  

(+)** (k, 1)  = 6Ai(0) (ik)af*(k) 
(k2  + P) A 

D**(k, I )  2(iZ) (ik)f*(k) -- - 
h (k2 + 1 2 )  A ’ 

( 3 . 3 c )  

( 3 . 3 4  

(3 .3e )  

where A = 1+y-%(ik)!(k2+Z2)i 

I n  (3 .3 )  the functions T~ = aU/aZ(X,  Y,O) and T~ = aI’/aZ(X, Y , 0 )  denote the 
surface shear stresses in the X- and Y-directions, and D(X, Y) satisfies 
aD/aX = - aP/a Y and helps to describe the motion more removed from the body 
surface, since I‘ - D(X, Y )  2-1 for large 2. 

Fast-Fourier-transform (FFT) calculations wereused to determine the corresponding 
real quantities, and the results were checked on different grid sizes and integration 
ranges. The following short and long wing shapes were considered : 

f ( ~ )  = Xi exp ( - X2) (X > 0) (long), ( 3 . 4 a )  

f ( X )  = X(1-X) (0 < X < 1 )  (short), (3 .4c)  

f ( X )  = Xi(1 -X)b (0 < X < 1 )  (short), ( 3 . 4 4  

f(X) = X i ( X  > 0) (long), (3 .4b )  
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with f(X) = 0 otherwise. Their solution properties are presented in figures 2-5. It 
should be noted that rather extensive grids were needed to accommodate the far-field 
behaviour of (3.3u-e), especially for the long wing shapes. Results from different grids 
indicate that graphical accuracy is usually achieved, and our figures present the most 
accurate results obtained in eac,h case, although some distortion persists in the 
farfields (see also (3 .5)  ff. below) and in the symmetry or antisymmetry of the 
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- 3  -2 -1 0 1 2 3 

-Y 

FIGURE 2. Linearized three-dimensional flow solutions, for the two-dimensional long wing-body 
junction of (3.4a), showing in (a)-(e) curves of constant P,  -6, D, rx, T~ and in (f) the typical 
secondary flows and vortices produced by the two-dimensional wings. The axes in (a)-(e) are X ,  Y .  
The contour values for P are -0.14, -0.12, -0.10, -0.087, -0.070, -0.052, k0.035, f0.017, 
zero (marked *); for -6 they are zero (*), 0.10, 0.21, 0.31, 0.42, 0.52, 0.63, 0.73, 0.83, 0.94, 1 . 0 0 ;  
for D they are f0.064, f0.051, 40.038, k0.025, 40.013, zero (*);  for^^ they are k0.16, f0.078, 
zero (*), 0.23, 0.31, 0.39, 0.47, 0.55, 0.62; and those for r y  are k0.12, k0.099, k0.075, k0.50, 
k0.025, zero (marked *). ---, negative valhes; -, positive values. For the purposes of 
comparison and analytical checks, the far-field asymptotes for the contours of level zero are at slopes 
Y / X  of f 1 for P ;  co for 6;  0 and cc for D, approximately 4.8 and -0.67 for T ~ ;  and approximately 
-2.4 and 1 for ry. Here the asymptotic slopes for zero P, D, S stem directly from (3.3b), (3.5a, b ) ,  
while those for rx, r y  come from numerical evaluation of the real convolution integrals implied by 
(3.3c, d )  when k, 11.0. 
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solutions, as well as in a few local features, e.g. wiggles. Such distortions all shrink 
under grid refinement, but computer storage limitations have prevented us from 
removing them totally from the results. The grid sizes used for most of the figures 
in this paper had approximately 768 points in k with - 30 < k < 30 and 512 points 
in 1 with -25 < 1 < 25. 

The main features apparent in the flow solutions seem sensible physically and are 
broadly as follows. Upstream of the wing, along the symmetry line Y = 0, a common 
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FIGURE 3. Linearized three-dimensional flow solutions for the long wing (3.4b), or for a flat-plate 
wing (see final paragraph of $3). Notation and general secondary flow are as in figure 2. The contour 
values for P,  -6, D ,  T ~ ,  7y are: (a) k0.068, f0.034, zero (*), 0.10, 0.14, 0.17, 0.20, 0.24, 0.27; 
(b)zero(*),0.40,0.80,1.2,1.6,2.0,2.4,2.8,3.2,3.6,4.0;(~) f0.19, f0.15, f0.12, i 0 . 0 7 7 ,  f0.039, 
zero(*); ( d )  +0.087,zero (*), 0.17,0.26,0.35, 0.44, 0.52, 0.61, 0.70, 0.79; ( e )  f0.15, f0.12, f0.09, 
f0.06, f0.03, zero (*). 

occurrence is the rise in pressure and the associated drop in the X-shear stress rX. 
This is much like a two-dimensional flow response ahead of the effective hump shape. 
Associated with it there is a generally positive Y-shear stress 7y and Y ‘edge velocity ’ 
D, as might be expected, but the displacement S falls, which is a surprising feature 
a t  first sight. Thus fluid is forced away (in the Y-direction) from the symmetry line, 
but tends to be drawn (in the negative Z-direction) towards the body surface there, 
ready to negotiate the wing beyond. This and other initially unexpected properties 
of the displacement are caused by the pressure from the wing, contributing the f* 
term in (3.1). The fluid can only go around the wing, not over it,  in broad terms, and 
so there is here a significant difference from the flow past (and over) humps studied 
by Smith et al. (1977). Near the front of the wing there is a particularly marked fall 
in the displacement, in fact. As soon as the wing position is encountered, however, 
the displacement adjusts rather fast, rising to become positive eventually downstream ; 
the pressure rises more rapidly, then falls rapidly to  a minimum before slowly 
recovering; and the shear stress 7x increases fairly abruptly to a maximum, followed 
also by a slower recovery downstream. So there the flow is accelerated, whilst the 
fluid ultimately is drawn back towards the symmetry line (7y, D > 0) in the positive 
Z-direction. Trends roughly opposite to those near the wing’s leading edge occur in 
the neighbourhood of the trailing edge for a short wing. The trailing edge acts like 
a sink for the three-dimensional flow, compared with the source-like role of the leading 
edge. See also $5 on trailing-edge effects. Finally, sufficiently far downstream the 
pressure overshoots to become positive again before decreasing back to zero, while 
the shear stress 7x undershoots to  a minimum, then increases to unity, and the 
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displacement has an overshoot to a positive maximum before its fall back to  zero. 
Thus fluid is eventually drawn towards the body surface (aslax < 0), in the 
2-direction, whereas i t  moves away from the symmetry line near the body surface 
(7y > O),  although still approaching the symmetry (X,Z) plane at the edge of the 
viscous zone ( D  < 0). There is no evidence of the corridor phenomenon of Smith 
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FIGURE 4. Linearized three-dimensional flow solutions for the short wing (3 .4~) .  Notation, 
asymptotes and general secondary flow are as in figure 2 .  Contour values for P ,  -13, D, 7x, 7y are: 
(a) -0.069, -0.062, -0.054, -0.046, -0.038, -0.031, -0.023, -0.015, i0.0077, zero (*); (b) 
zero (*), 0.044, 0.087, 0 13. 0.17, 0.22, 0.26, 0.31, 0.35, 0.39, 0.44; ( c )  k0.024, 10.020, f0.015, 
f0.0098, i0.0049, zero (*); (d )  k0.13, i0.087, _+0.043, zero (*), 0.17,0.22,0.26,0.30; (e) i0.051, 
10.041, k0.031, f0.021, +0.010, zero (*). 

et al. (1977) far downstream. Instead, the flow returns to its original upstream state 
quite smoothly in general, a property that can be verified as follows from an 
inspection of the transforms in (3.3). 

Zn the far field, for large X 2  + Y2,  inviscid characteristics tend to dominate usually, 
since then in effect k, l+O. Thus (3.3a-e) give, for example, 

(3.5a) 

(3.5b) 

(cf. Smith et al. 1977), with the wing acting as a point source p ( 0 ) )  in those cases 
where j _" , f (X )  dX is finite. The implied asymptotes for the curves of zero P, 8, T ~ ,  

7y and D are noted in the captions for figures 2-5 and agree reasonably well with 
the FFT calculations. The only non-uniformity in the far-field account occurs in the 
direct wake of the wing, when k+O but Z + C O  with 2 = O(lkl-i) ,  in view of (3.3), i.e. 
as X +  co but with Y = O(X-i)+O. There viscous effects reassert their influence, but 
in a region that thins like X-! in the Y-direction while expanding (as usual) like X i  
in 2. This contrast with the flow over a three-dimensional hump is due to the 
two-dimensionality of the wing shape and the corresponding nature of the effective 
hump shape in (3.2): cf. 54. 

The secondary flows induced are also of concern and are sketched in figure 2 (f ). 
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The basis for this figure is the behaviour of 8, D ,  rx and r y  as X and Y vary, since 
these fix the flow patterns near and relatively far from the body surface. The overall 
trend initially is one of motion around the wing, as noted earlier. Thus upstream the 
secondary flow is away from the symmetry line but towards the body surface. Beyond 
the front or maximum thickness of the wing the flow then returns toward the 
symmetry line, but tends to be away from the body surface. Further downstream, 
secondary vortices are induced, producing outward motion near the body surface 
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FICJURF, 5 .  Linearized three-dimensional flow solutions for the short wing (3.4d). Notation, 
asymptotes and general secondary flow are as in figure 2. Contour values for P, -8, D, rx, rY are: 
(a) -0.13, -0.11, -0.098, -0.082, -0.065, -0.049, 50.033, f0.016, zero (*); ( b )  zero (*), 0.091, 
0.18, 0.27, 0.37, 0.46, 0.55, 0.64, 0.73, 0.82, 0.91; (c) k0.052, f0.042, k0.031, & O . O Z l ,  fO.O1O, 
zero (*) ;  (d )  k0.36, k0.27, k0.18, kO.09, zero (*), 0.45,0.54; ( e )  fO.ll, f0.089, f0.067, k0.045, 
k0.022, zero (*). 

supplied by inward motion further out, and a wash of fluid down the wing surface/ 
symmetry line. 

Finally here we turn to the central problem of the thin flat-plate symmetric wing, 
taking the wing to  be ‘long’. Comments on shorter cases are presented in $5. The 
flat plate induces an interaction by means of its (Blasius) boundary layer’s parabolic 
displacement, which acts as an effective wing thickness. The thickness is O(Re-f xi), 
however, and so provokes a pressure only O(Redx-i) ,  or O(Re-A), within the critical 
interactive length-scale a t  the leading edge. This is too small, by a factor O(Re-h), 
to induce a‘nonlinear wing-body interaction, therefore. Instead a linearized response 
occurs, with the local wing shape being in effect exactly (3.4b) (for all X > 0) and 
with the gauge factor h replaced by PIRe-h. Here p1 = 1.7208, from the Blasius layer, 
and the flow structue remains intact with such a value of h. So the properties in 
figure 3 cover the flat-plate case also. 

4. Three-dimensional wings (e.g. swept, tapered) 
Sweptback or -forward wings are of considerable interest in practice, and so an 

investigation of the influence of sweep at a wing-body junction is desirable. Again, 
a smoother more three-dimensional version of the junction would seem to resemble 
more closely many of the geometries that are made or occur in practice. Therefore 
below we take the thin wing to have a general three-dimensional form 

Y = f ( x , z )  (4.1) 

whilst preserving the symmetry about the (z, 2)-plane (figure 6). 
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FIGURE 6. A characteristic body-three-dimensional-wing symmetric junction, with sweep (angle /I) 
and tapering: see $4. Delta wings and other three-dimensional effects can also be dealt with. 

All the critical scalings of 92 remain intact for this case, whether the wing is short 
or long, but the inviscid results (2.1) and ( 2 . 2 ~ )  in the upper deck need generalizing, 
since the three-dimensional wing condition on j i  is now ap/a Y(X, 0 + , 5)  = - 
hazf/aX2(X, 5) for tangential flow there. Here AX, z )  = hRe-ff(X, 5) defines the 
reduced wing shape in view of the critical scalings involved. So we find, after some 
manipulation of the solution of Laplace's three-dimensional erdelation (see e.g. Carrier, 
Krook & Pearson 1966) for p, that  the pressure-displacement interaction now takes 
the form 

on the body surface, where the definition 

00 m 

F**(k, I) = 2 h s  X - - a  ~~_~e-(hz+~z) ' i - ikxf(X,  5) dXd5 (4.3) 

fixes the Fourier transform of the function F ( X ,  Y )  in terms of the known wing shape 
f(X, 5). Then (4.2) and (4.3), allied with the three-dimensional boundary-layer 
equations in (2.2b-g), which still hold in the lower deck on the body surface, determine 
the local nonlinear flow interaction. Here in fact (4.3) defines the effective hump shape 
F ,  just as in 93. 

For linearized motion where the parameter h is small we may use (4.3) to determine 
F ,  for a given three-dimensional wing shape f ,  and then as in $ 3  appeal directly to 
the results for flow past humps in Smith et al. (1977). Hence it follows that the 
solutions (3.3~-e) are retrieved, but with F** now given by (4.3). Two main examples 
of interest are the swept wing and the tapered wing or junction. For the swept wing 
first, if the sweep angle is P, wheref(X, 5) = g(X-5 tanP)  for X > 5 tanP,f(X,  Z) = 0 
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FIGURE 7 .  For caption see page 209. 

for X < 5 tanp, and g ( X )  is the base of the wing shape adjoining the body surface 
a t  2 = O +  , (4.3) yields 

(4.4) 

Combined with (3.3u-e), (4.4) then yields the solutions for the corresponding 
interaction properties presented in figure 7,  for a particular base shape g ( X ) .  Here 

F**(k, 2) - - 29*(k) 
h ik tan/3+ (k2+Z2): ' 
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FIQURE 7. For caption see facing page. 

again no corridor effect emerges in the flow far downstream on the present scale. 
Secondly, for the tapered wing typically we have f ( X ,  2 )  = gl(X) g,(Z) with g,(Z) 
controlling the degree of tapering in the 2-direction away from the junction. As an 
example we take the exponential form g2(2) = exp ( -  a2) (2 > 0 ) ,  with a a positive 
constant, for which (4.3) then gives 

(4.5) 
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FIGURE 7. Linearized flow solutions for the examples of three-dimensional wings considered in $4, 
the swept wing ((a)-(e)) and the tapered wing ((fl-(j)). The contour values are: (a )  -O.Om, -0.043, 
-0.036, -0.028, k0.021, k0.014, f0.0071, zero (*); (b) zero (*), 0.039, 0.077, 0.12, 0.15, 0.19, 
0.23, 0.27, 0.31, 0.35, 0.39; ( c )  i0.023, f0.018, k0.014, +0.0091, f0.0046, zero (*); (d) i0.062, 
k0.031, zero (*), 0.094,0.12,0.16,0.19,0.22,0.25; ( e )  f0.046, k0.037, k0.028, f0.018, f0.0092, 
zero (*); (f) -0.037, -0.032, -0.026, -0.021, k0.016, f O . O 1 l ,  f0.0053, zero (*); ( 9 )  zero (*), 
0.033, 0.065, 0.098, 0.13, 0.16, 0.20, 0.23, 0.26, 0.29, 0.33; (h) kO.019, f0.016, f0.012, f0.0078, 
f0.0039, zero (*); ( i )  k0.13, fO.10, f0.066, k0.033, zero (*), 0.17, 0.20; (j) k0.042, k0.034, 
- +0.025, _+0.017, k0.0084, zero (*). The sweep angle is 4 5 O ,  with g ( X )  = X(l  -X) for 0 < X < 1, 
g ( X )  = 0 otherwise, in (a)-(e). The taper in (f)-(j) is for u = 2, with gl(X) = X(l -X) for 0 < X < 1 ,  
gl(X) = 0 otherwise. 

Figure 7 also shows the interactive solutions in this case, for a particular wing base 
shape g , ( X ) .  Because of the action of the n-term in (4.5), a corridor effect for Y = 0(1) 
is found, analytically and numerically, to be present downstream now as X increases, 
but its properties are different from those of Smith et al., since here i t  involves no 
change in the orders of magnitude of P ,  6, D, rx and ry. There is only a slight 
logarithmic singularity as Y+O, which is smoothed out in the thinner zone O(X-i)  
width mentioned earlier. This demonstrates to  some extent the controlling effect of 
the wing’s local three-dimensionality, close to the junction, on the interactive 
three-dimensional motion induced at the body surface. The secondary flows induced 
can also be surmised from figure 7. 

Two unusual aspects of these flow solutions compared with those of $3  are, first, 
the occurrence of a positive displacement effect in most of the flow ahead of each of 
the three-dimensional wings, before an abrupt decrease takes place immediately 
before the wing; and, secondly, the closed loops of constant displacement found for 
the junction with it tapered wing. It is interesting also that sweep angles of order 
unity can he accommodated in the theory. The far fields can be deduced as for the 
two-dimensional wings considered earlier. 
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5. Further comments, comparisons and larger-scale features 
The model studied above for the wing-body junction takes a rather simplistic 

geometry comprising a thin two- or three-dimensional wing (figures 1 and 6)  
protruding normally from a flat body surface, with or without sweep. Yet such a 
model would seem to provide a reasonableJirst step towards understanding analytically 
the three-dimensional flow interactions possible. Indeed the flat-plate example noted 
in $3  may be regarded as an obvious central problem to study. One would perhaps 
not expect these thin-wing models to bear much relation to the bluff-wing-body 
configurations examined experimentally (e.g. East & Hoxey 1968; Peake et al. 1965; 
Shabaka & Bradshaw 1981), but nevertheless the measure of agreement on certain 
flow features is surprisingly good. In  particular the linearized solutions always show 
two maximum local deficits taking place in the streamwise ( X )  surface shear stress 
on the body, just ahead of and beyond the front of the wing, on the axis of symmetry, 
which suggests that regular separation or flow reversal would tend to occur there first, 
in the nonlinear regime. That, allied with the corresponding Y surface-shear-stress 
patterns, forms a fairly clear connection with the experimental observations (see 
references above) of a separation line starting upstream of the wing, and bending 
round it, and of separation downstream. Also the strong secondary-flow patterns 
found here appear to be sensible physically and to tie in generally with those reported 
in the above references, as fluid is forced to move around the wing. Specifically, for 
turbulent-flow experiments, figure 3 of Shabaka & Bradshaw (1981) compares most 
favourably with our theoretical finding (figures 2-5) of a pronounced downwash on 
the wing sufficiently far beyond the leading edge. For laminar flow the experiments 
of Peake et al. (19651, e.g. their figures 11-13 and 17, also give crossflows similar to 
those found theoretically here. Qualitative agreement continues to hold in comparisons 
with the classical boundary layer calculations of Zhu (1982) concerning both the 
separation line upstream (see his figures 1 ,  5 and 23) and the cross-flow (his Figures 
8, 10, 28 and 29), although there is a puzzling feature in the displacement thickness 
(his figure l l ) ,  which shows an increase ahead of the wing rather than the decreases 
predicted theoretically (see our figures above). The further experiments reported by 
Zhu also tend to agree qualitatively with the present theoretical study. 

I n  view of the particularly promising measure of possible agreement overall above 
i t  would be very interesting to see the results of a numerical study of the nonlinear 
regime (2.2a-g) holding when h is 0(1) or larger. Possible numerical schemes for this 
three-dimensional problem are described by Burggraf & Duck (1983) and Smith 
(1983). Some other improvements in the models taken can be made also, for instance 
( a )  by adding in a hump shape on the body surface to produce a smoother junction, 
( b )  by considering wings at nonzero angles of incidence, ( c )  by assuming three- 
dimensional oncoming flow both along the body surface and away from it,  and (d )  
by considering wings with nonzero angles of dip. Here, in ( b ) ,  the critical angle of 
incidence a, (the angle between the plane of the wing and the (2, 2)-plane) is small, 
of order R e d ,  for a long thin wing since the induced pressure is of order 0 1 ~  2-4  near 
the leading edge ; whereas the effect of an angle of dip a2 (the angle between the body 
surface and the plane of the wing), in ( d )  above, is less drastic in the sense that the 
flow structures found earlier in $5 2 4  remain appropriate even for O( 1 )  values of a2, 
if the wing is thin. Both incidence and dip introduce nonsymmetry into the wing-body 
interaction, however. 

The development of the motion downstream beyond the triple-deck a t  the leading 
edge is also of concern. Many studies have been made (e.g. Zamir 1968; Rubin & 



Flow past wing-body junctions 211 

Grossman 1971, Desai & Mangler 1974) of the well-developed similarity flow believed 
to be achieved only as x + co in a configuration such as that in figure 1 ,  e.g. the flat-plate 
wing. But little or no research into the developing flow properties holding for finite 
x > 0 is evident yet. There the main flow structure becomes a t  first sight a relatively 
simple one, with Blasius boundary layers of typical thickness O(Re-4) (but different 
origins) astride the wing and the body except in a classical O(Re-4) by O(Re-4) zone 
( Z l ,  say) near the x-axis where y- and z-diffusion become comparable. This picture 
emerges from the leading-edge properties of $ $ 2 4  as X +  + co, since there viscous 
interactive effects concentrate in a zone (22) whose %-scale increases like Xfi but 
whose Y-scale decreases like X-i  (see the far field in $3). So the y- and z-scales of 2 2  
are then respectively of orders Re-: (Re: x)-i and Re-i (Re2 x);, and both become 
O(Re-:) as x rises to become O( 1). Thus zone 22 merges into zone Z1 downstream. It is 
striking that the thickness of Z1 in the y-direction must therefore appear unbounded 
(a x-i) initially, as x+O+. The remainder of the triple-deck interaction, outside 
zone 22, has less influence downstream, but its effects do persist nonetheless, and 
they force a secondary flow in the two Blasius layers in x > 0. This interactive 
secondary flow is not mentioned in previous studies. 

I n  addition, in cases where the leading-edge interaction produces a corridor 
(wherein Y = O(1)) downstream, an extra O(Re-i) by O(Re-2) zone is produced along 
the x-axis for x > 0, forming a buffer between the classical zone Z1 and the Blasius 
layers. This corridor, which has been observed experimentally in flow over humps, 
could have a significant impact on the flow downstream. 

Finally, again for the flat-plate wing, i t  is of practical interest to examine the 
trailing-edge motion. Suppose the wing has chord length L,  of order unity (see 
figure 8). For 0 < x < L,  and outside Z1, the two Blasius layers BL1 and BL2 grow 
along the wing and the body surface, after the mainly linear adjustment (53) near the 
leading edge x = 0. Near the trailing edge at x = L more triple-deck interaction 
therefore comes into operation. It has a predominantly two-dimensional form (as 
determined by Jobe & Burggraf 1974) on most of the wing, the prime exception being 
at  distances z of order Re-: from the body surface, where the flow interaction must 
become three-dimensional again and nonlinear for both the wing and body motions. 
There, first, the flow adjoining the body surface satisfies the three-dimensional 
boundary-layer equations (2.2 b-g) again, but with 

A, X replaced by A,, = Re; (x- L ) ,  (5.1) 

respectively, where A, is the incident reduced skin friction of BL2 as x+L- ,  and 
0 < A, < A. Secondly, the viscous layer on the wing (2 < 0) and in its wake ( g  > 0) 
is also controlled by ( 2 . 2 M , f , g ) ,  subject to the replacements 

( U , V ,  W,P,S,X, Y , z , h ) - t ( O , ~ ’ , ~ , B , S , ~ , z ,  PA,) (5.2) 

for the rotation of axes, and subject to the usual lower-deck scalings again. Here 
A, > 0 is the reduced skin friction of BL1 at x: = L- , and instead of (2.2e) we have 
the trailing-edge conditions 

^ ^ ^  U = W = V = O  a t  P = o ,  X < O ,  (5 .3a)  

a 0  a w  - 
a Y  a Y  - = - = V = O  a t  P = o ,  2 > 0 .  ( 5 . 3 b )  

The interaction between the two nonlinear layers of (5.1) and (5.2) arises through their 
respective unknown pressures and displacements, P ( 2 ,  Y) and 6 ( X ,  Y) on the body 
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FIGURE 8. Flow past the  junction of a symmetric two-dimensionat flat-plate wing, chord L = O( l ) ,  
and a flat body surface, showing the flow structure (dashed lines). This is dominated by the 
leading-edge and trailing-edge three-dimensional triple decks (3D TD), the thinner classical 
two-dimenaional boundary layers BL1, RL2 and classical three-dimensional corner boundary layer 
Z1, and the thin two- and three-dimensional wakes. See $ 5 .  Similar flow structures can apply for 
thicker and/or three-dimensional wing-body junctions. 

and F ( x , , )  and (F(x,Z) on the wing, in scaled terms. These are linked via the 
three-dimensional potential flow in the upper deck, which requires that 

(5.4u) 

(5.4b) 

where F ( x ,  Y )  and P ( x ,  5) are given by the transforms 

( 5 . 4 c )  

E**(k,m) = Z J -  X--m jy- ,e-(hz+~z) 'y- ih~6(H,  Y)dXdY, (5.4d) 

similar to 94 .  I n  consequence the wing and body surface flows near the trailing edge 
affect each other about equally, in general (cf. the leading edge, in $ 8 2 4 ,  where the 
major interaction is one-way only) ; and a challenging, nonlinear, coupled three- 

p * ( k ,  I) = 2 J: jm e-W2+df-tkz $(x, 2 )  d x & ,  
x=-a, z=(l 

m 00 
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dimensional problem is posed for the local flow adjustment. Some useful and 
analytical properties can be derived however if the wing is relatively short, so that 
L is small. For then the Blasius layer BL1 has its skin friction enhanced, since 

where r1 = 0.33206 ... . Hence the three-dimensional triple deck associated with the 
wing surface, in (5 .2) ,  shrinks, by factors Li in all the r?-, Y-  and %directions, and 
for Z of order unity the trailing-edge motion becomes virtually planar (and as in Jobe 
& Burggraf 1974). Indeed, for r?, Y and i all 0(1), i.e. in the three-dimensional upper 
deck which controls the body surface motion, we have potential flow past the classical 
planar displacement 

( 5 . 6 ~ )  

(5.6b) 

where L is small. Here p1 is a finite positive constant, and (5.6b) describes the 
Goldstein (1930) near wake. The irregularity a t  rf = Ok in.(5.6a, b )  is smoothed out 
when x i s  smaller, of order Lt. For r? = 0(1) the wing-body interaction of (5.1)-(5.4d) 
becomes mostly one-way again, and linear, since ( 5 . 4 ~ )  now yields ( 2 . 2 ~ )  with 

hf( X) + 8( r?, 2 ) .  ( 5 . 6 ~ )  

The reverse effect, of the body on the wing flow, is now diminished. Hence the 
three-dimensional traling-edge adjustment considered reduces to the linearized 
analysis of $3 ,  with h = p1L4 small. The corresponding solutions for the body surface 
flow near the trailing edge are presented in figure 9 .  As expected, they are similar 
to those of $3  except that  the - sign in (5.6b) alters all the signs involved. Thus, 
on the body surface, we obtain 

ahead of the trailing edge, close to the junction; i ( 5 . 7 ~ )  

increased displacement, 
decreased pressure, 
increased streamwise shear, 
inward crossflow shear 

decreased displacement, 
increased pressure, 
decreased streamwise shear, 

} in the wake, almost directly behind the wing. (5 .7b)  

outward crossflow shear ) 

This tends to confirm the roughly equal but opposite effects of the leading and trailing 
edges described in $3 .  Also, there is no corridor, and the 2-4 narrowing downstream 
is covered by earlier comments. Note that the above applies for L small but greater 
than O( R e d ) ,  so that the trailing-edge interaction remains distinct from the earlier 
one a t  the leading edge. It also applies near the trailing edges of short flat-plate wings 
like those in $ 3  if the scaled chord length L there is large. 

The displacement decrease in (5.7 b ) ,  which is pronounced, and the associated 
pressure increase there, would appear to agree with physical expectations for the flow 
behind the wing. 

A computational treatment applied to the nonlinear version of the trailing-edge 
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FIGURE 9. For caption see facing page. 

junction flow in (5.1)-(5.4d) would be of considerable interest, possible computational 
methods again being those of Burggraf & Duck (1983) and Smith (1983). Experimental 
studies of the central, flat-plate, wing-body-junction model (figure 8) could also be 
an aid to furthering our theoretical and physical understanding. 

J.G. wishes to thank the S.E.R.C. for financial support. We both thank Mr 
J. H. B. Smith and Prof. P. Bradshaw for kindly pointing out some helpful references 
to us. 
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FIGURE 9. Linearized three-dimensional solutions for P ,  -6,  D,  7x, 7y in (a)-(e) respectively near 
the trailing edge of the wing-body juncton when the chord L is small (see $ 5 ) .  The axes are x, Y .  
Contour valuesare : ( a )  -0.22, -0.19, -0.16, -0.13, f0.096, k0.064, f0.032, zero (*); (b)  -2.6, 
-2.3, -2.0, -1.7, -1.4, -1.1, -0.85, -0.57, +0.28,zero(*);(c) f0.16, f0.13, f0.096, f0.064, 
k0.032, zero (*) ;  ( d )  -0.75, -0.67, -0.58, -0.50, -0.42, -0.33, -0.25, -0.17, f0.083, 
zero (*); ( e )  f0.19, f0.15, f0.12, k0.077, k0.039, zero (*). 
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